BioMediTech Research Infrastructure

Tampere Drosophila facility

The fruitfly Drosophila melanogaster is a favorite model organism of geneticists, and nowadays used to model all kinds of biological processes. We have a state-of-the-art Drosophila facility and offer guidance and tools in Drosophila related projects.


Tampere Drosophila facility promotes the use of the model organism Drosophila melanogaster, or the common fruit fly, in life sciences. Drosophila is easy and inexpensive to rear in the laboratory, produces numerous progeny and has a short (about 10 d) generation time. As an invertebrate, Drosophila is an ethically ideal animal model.

Drosophila is an extremely useful tool for studying various biological processes. The Drosophila genome has low redundancy; single mutants are likely to reveal phenotypes of interest. Moreover, there is a high degree of conservation of a very large number of biological processes between flies and mammals, and 75% of known human genetic disease genes have homologues in the fly.

The major advantage of flies is the simplicity and scale for genetic analysis. Many molecular genetic techniques, including RNA interference (RNAi), have been developed in the last few decades. Mutants, transgenic lines and other tool lines are available from stock centers such as the Bloomington Drosophila Stock Center (BDSC) and the Exelixis Collection at the Harvard Medical School. RNAi fly lines based on the binary GAL4/UAS system are available commercially from several centers including Vienna Drosophila RNAi center (VDRC), the NIG-FLY (National Institutes of Genetics, Japan) and the TRiP (Transgenic RNAi project) collection at Harvard Medical School.


Creating transgenic flies

Tampere Drosophila facility offers guidance in plasmid generation for creating transgenic flies, and we help in getting the recombinant DNA injected into embryos and identification of transgenic fly lines. Thereafter we offer guidance in mapping the transgenes by crossing schemes and/or inverse-PCR.

Consultation and guidance on the experimental setting

We offer guidance on the experimental setting, e.g. selecting appropriate GAL4-driver fly lines for a tissue-specific or ubiquitous knockdown/expression of target gene(s), crossing schemes, fly phenotypes etc.

Maintenance of fly lines

  • Acquiring fly lines from stock centers:
    Upon request, we offer help to select and order fly lines including mutants, transgenic lines, RNAi-lines and other tool lines from stock centers (Bloomington, Harvard, VDRC, NIG-Fly Japan), and maintain them in the facility.
  • Locally maintained fly lines:
    Many useful lines, such as numerous RNAi- and GAL4-driver lines, are maintained locally and are therefore easily accessed.


All the users of the Tampere Drosophila facility services are obligated to acknowledge the facility in publications:

“The authors acknowledge the Tampere Drosophila facility for their service.”


The Drosophila core facility is equipped with:

For maintenance and basic phenotype analysis:

  • Ten work stations with stereo microscopes, external light sources and humidified CO2 system for anesthetizing flies.
  • Fly food kitchen for food preparation and cold rooms for storage of food vials.
  • Quarantine room for fly lines arriving from outside of the facility and for infection experiments. There are two microscopes with CO2 system in the quarantine room.
  • Humidity- and light-controlled fly incubators at varying temperatures (18°C, 25°C, 26°C, 29°C).

Experimental equipment setup includes:

  • Stereo microscopes for imaging flies/larvae, including Nikon SMZ745T stereo microscope + imaging system, which can be used for teaching as well as taking high resolution color pictures of flies and/or their dissected tissues
  • Inverted microscope for imaging fly samples prepared on microscope slides
  • Stereo microscope for fluorescence sorting / imaging (includes Nightsea adapter and light sources for sorting GFP and RFP-positive flies/larvae)
  • Video imaging equipment for behavioral assays
  • Drosophila activity monitor and incubator


Prices depend on each individual project. Please inquire!


Drosophila facility is located in the Arvo building (Arvo Ylpön katu 34) at the Tampere University.

The facility is coordinated by:
Dr. Susanna Valanne, Ph.D.
Tel: +358 41 435 5845
Room: ARVO F324


Bahhir D, Yalgin C, Ots L, Järvinen S, George J, Naudí A, Krama T, Krams I, Tamm M, Andjelković A, Dufour E, González de Cózar JM, Gerards M, Parhiala M, Pamplona R, Jacobs HT, Jõers P.
Manipulating mtDNA in vivo reprograms metabolism via novel response mechanisms.
PLoS Genet. 2019 Oct 4;15(10):e1008410. doi: 10.1371/journal.pgen.1008410. eCollection 2019 Oct. PMID: 31584940

George J, Tuomela T, Kemppainen E, Nurminen A, Braun S, Yalgin C, Jacobs HT.
Mitochondrial dysfunction generates a growth-restraining signal linked to pyruvate in Drosophila larvae.
Fly (Austin). 2019 Sep 17:1-17. doi: 10.1080/19336934.2019.1662266. PMID: 31526131

George J, Jacobs HT.
Germline knockdown of spargel (PGC-1) produces embryonic lethality in Drosophila.
Mitochondrion. 2019 Aug 29;49:189-199. doi: 10.1016/j.mito.2019.08.006. PMID: 31473309

George J, Jacobs HT.
Minimal effects of spargel (PGC-1) overexpression in a Drosophila mitochondrial disease model.
Biol Open. 2019 Jul 19;8(7). pii: bio042135. doi: 10.1242/bio.042135. PMID: 31292108

Saari S, Kemppainen E, Tuomela T, Oliveira MT, Dufour E, Jacobs HT.
Alternative oxidase confers nutritional limitation on Drosophila development.
J Exp Zool A Ecol Integr Physiol. 2019 Jul;331(6):341-356. doi: 10.1002/jez.2274. Epub 2019 Jun 20. PMID: 31218852

Salminen TS, Cannino G, Oliveira MT, Lillsunde P, Jacobs HT, Kaguni LS.
Lethal Interaction of Nuclear and Mitochondrial Genotypes in Drosophila melanogaster.
G3 (Bethesda). 2019 Jul 9;9(7):2225-2234. doi: 10.1534/g3.119.400315. PMID: 31076384

González de Cózar JM, Gerards M, Teeri E, George J, Dufour E, Jacobs HT, Jõers P.
RNase H1 promotes replication fork progression through oppositely transcribed regions of Drosophila mitochondrial DNA.
J Biol Chem. 2019 Jan 11. pii: jbc.RA118.007015. doi: 10.1074/jbc.RA118.007015. PMID: 30635398

Valanne S, Salminen TS, Järvelä-Stölting M, Vesala L, Rämet M.
Immune-inducible non-coding RNA molecule lincRNA-IBIN connects immunity and metabolism in Drosophila melanogaster.
PLoS Pathog. 2019 Jan 11;15(1):e1007504. doi: 10.1371/journal.ppat.1007504. PMID: 30633769

Correction: Valanne S, Salminen TS, Järvelä-Stölting M, Vesala L, Rämet M.
Immune-inducible non-coding RNA molecule lincRNA-IBIN connects immunity and metabolism in Drosophila melanogaster.
PLoS Pathog. 2019 Oct 4;15(10):e1008088. doi: 10.1371/journal.ppat.1008088. eCollection 2019 Oct. PMID:31584999

Saari S, Garcia GS, Bremer K, Chioda MM, Andjelković A, Debes PV, Nikinmaa M, Szibor M, Dufour E, Rustin P, Oliveira MT, Jacobs HT.
Alternative respiratory chain enzymes: Therapeutic potential and possible pitfalls.
Biochim Biophys Acta Mol Basis Dis. 2019 Apr 1;1865(4):854-866. doi: 10.1016/j.bbadis.2018.10.012. Epub 2018 Oct 17. PMID: 30342157

Andjelković A, Mordas A, Bruinsma L, Ketola A, Cannino G, Giordano L, Dhandapani PK, Szibor M, Dufour E, Jacobs HT.
Expression of the Alternative Oxidase Influences Jun N-Terminal Kinase Signaling and Cell Migration.
Mol Cell Biol. 2018 Nov 28;38(24). pii: e00110-18. doi: 10.1128/MCB.00110-18. Print 2018 Dec 15. PMID: 30224521

Valanne S, Vesala L, Rämet M.
Commentary: Drosophila GATA Factor Serpent Establishes Phagocytic Ability of Embryonic Macrophages.
Front Immunol. 2018 Jul 6;9:1582. doi: 10.3389/fimmu.2018.01582. eCollection 2018. No abstract available. PMID: 30034400

Rodrigues APC, Camargo AF, Andjelković A, Jacobs HT, Oliveira MT.
Developmental arrest in Drosophila melanogaster caused by mitochondrial DNA replication defects cannot be rescued by the alternative oxidase.
Sci Rep. 2018 Jul 18;8(1):10882. doi: 10.1038/s41598-018-29150-x. PMID: 30022066

Camargo AF, Chioda MM, Rodrigues APC, Garcia GS, McKinney EA, Jacobs HT, Oliveira MT.
Xenotopic expression of alternative electron transport enzymes in animal mitochondria and their impact in health and disease.
Cell Biol Int. 2018 Jun;42(6):664-669. doi: 10.1002/cbin.10943. Epub 2018 Feb 23. Review. PMID: 29384231

Ciesielski GL, Nadalutti CA, Oliveira MT, Jacobs HT, Griffith JD, Kaguni LS.
Structural rearrangements in the mitochondrial genome of Drosophila melanogaster induced by elevated levels of the replicative DNA helicase.
Nucleic Acids Res. 2018 Apr 6;46(6):3034-3046. doi: 10.1093/nar/gky094. PMID: 29432582

Gerards M, Cannino G, de Cózar JMG, Jacobs HT.
Intracellular vesicle trafficking plays an essential role in mitochondrial quality control.
Mol Biol Cell. 2018 Jan 17. pii: mbc.E17-10-0619. doi: 10.1091/mbc.E17-10-0619. [Epub ahead of print] PMID: 29343549

Aittomäki S, Valanne S, Lehtinen T, Matikainen S, Nyman TA, Rämet M, Pesu M.
Proprotein convertase Furin1 expression in the Drosophila fat body is essential for a normal antimicrobial peptide response and bacterial host defense.
FASEB J. 2017 Jul 13. pii: fj.201700296R. doi: 10.1096/fj.201700296R. [Epub ahead of print] PMID: 28705811

Saari S, Andjelković A, Garcia GS, Jacobs HT, Oliveira MT.
Expression of Ciona intestinalis AOX causes male reproductive defects in Drosophila melanogaster.
BMC Dev Biol. 2017 Jul 3;17(1):9. doi: 10.1186/s12861-017-0151-3. PMID: 28673232

Salminen TS, Oliveira MT, Cannino G, Lillsunde P, Jacobs HT, Kaguni LS.
Mitochondrial genotype modulates mtDNA copy number and organismal phenotype in Drosophila.
Mitochondrion. 2017 May;34:75-83. doi: 10.1016/j.mito.2017.02.001. Epub 2017 Feb 16. PMID: 28214560

Andjelković A, Kemppainen KK, Jacobs HT
Ligand-Bound GeneSwitch Causes Developmental Aberrations in Drosophila that Are Alleviated by the Alternative Oxidase.
G3 (Bethesda). 2016 Sep 8;6(9):2839-46. doi: 10.1534/g3.116.030882. PMID 27412986

Salminen TS, Rämet M
Pickle Flavors Relish in Drosophila Immunity.
Cell Host Microbe ;20(3)273-4, 2016. PMID: 27631694

Schmid MR, Anderl I, Vo HT, Valanne S, Yang H, Kronhamn J, Rämet M, Rusten TE, Hultmark D
Genetic Screen in Drosophila Larvae Links ird1 Function to Toll Signaling in the Fat Body and Hemocyte Motility.
PLoS One ;11(7)e0159473, 2016. PMID: 27467079

Vanha-Aho LM, Valanne S, Rämet M
Cytokines in Drosophila immunity.
Immunol Lett ;2016. PMID: 26730849

Anderl I, Vesala L, Ihalainen TO, Vanha-Aho LM, Andó I, Rämet M, Hultmark D
Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection.
PLoS Pathog ;12(7)e1005746, 2016. PMID: 27414410

Syrjänen L, Valanne S, Kuuslahti M, Tuomela T, Sriram A, Sanz A, Jacobs HT, Rämet M, Parkkila S
β carbonic anhydrase is required for female fertility in Drosophila melanogaster
Front Zool. 2015 Aug 22;12:19. PMID: 26300950

Vanha-Aho LM, Anderl I, Vesala L, Hultmark D, Valanne S, Rämet M
Edin Expression in the Fat Body Is Required in the Defense Against Parasitic Wasps in Drosophila melanogaster
PLoS Pathog. 2015 May 12;11(5):e1004895. PMID: 25965263

Schmid MR, Anderl I, Vesala L, Vanha-aho LM, Deng XJ, Rämet M, Hultmark D
Control of Drosophila blood cell activation via Toll signaling in the fat body
PLoS One. 2014 Aug 7;9(8):e102568. PMID: 25102059

Kuuluvainen E, Hakala H, Havula E, Sahal Estimé M, Rämet M, Hietakangas V, Mäkelä TP
Cyclin-dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for transcription of Serpent-dependent innate immunity genes in Drosophila
J Biol Chem. 2014 Jun 6;289(23):16252-61. doi: 10.1074/jbc.M113.541904. Epub 2014 Apr 28

Rämet M, Hultmark D
Drosophila immunity–glorious past, dynamic present and exciting future
Dev Comp Immunol. 2014 Jan;42(1):1-2. PMID: 23891875

Valanne S
Functional genomic analysis of the Drosophila immune response
Dev Comp Immunol. 2014 Jan;42(1):93-101. doi: 10.1016/j.dci.2013.05.007
Epub 2013 May 21. Review. PMID: 23707784

Myllymäki H, Valanne S, Rämet M
The Drosophila imd signaling pathway 
J Immunol. 2014;192(8):3455-62

Myllymäki H, Rämet M.
The JAK/STAT pathway in Drosophila immunity 
Scand J Immunol. 2014 Mar 27.

Kemppainen KK, Rinne J, Sriram A, Lakanmaa M, Zeb A, Tuomela T, Popplestone A, Singh S, Sanz A, Rustin P, Jacobs HT (2013)
Expression of alternative oxidase in Drosophila ameliorates diverse phenotypes due to cytochrome oxidase deficiency 
Hum Mol Genet. 2014 Apr 15;23(8):2078-93

El-Khoury R, Kemppainen KK, Dufour E, Szibor M, Jacobs HT, Rustin P (2013)
Engineering the alternative oxidase gene to better understand and counteract mitochondrial defects: State of the art and perspectives
Br J Pharmacol. 2014;171(8):2243-9.

Mallikarjun V, Sriram A, Scialo F, Sanz A (2014)
The interplay between mitochondrial protein and iron homeostasis and its possible role in ageing 
Exp Gerontol,  pii: S0531-5565(13)00371-9. doi: 10.1016

Jõers P, Lewis S, Fukuoh A, Parhiala M, Ellilä S, Holt IJ, Jacobs HT
Mitochondrial transcription terminator family members mTTF and mTerf5 have opposing roles in coordination of mtDNA synthesis
PLoS Genet. 9, e1003800-

Jõers P, Jacobs HT (2013)
Analysis of replication intermediates indicates that Drosophila melanogaster mitochondrial DNA replicates by a strand-coupled theta mechanism 
PLoS ONE 8, e53249.

Rämet M, Hultmark D
Drosophila immunity – Glorious past, dynamic present and exciting future
Dev Comp Immunol. 2013 Jul 25.

Valanne S
Functional genomic analysis of the Drosophila immune response
Dev Comp Immunol. 2013 May 21.

Valanne S, Rämet M
Uracil debases pathogenic but not commensal bacteria
Cell Host Microbe, 2013;13(5):505-6

Myllymäki H & Rämet M
Transcription factor zfh1 downregulates Drosophila Imd pathway
Developmental and Comparative Immunology, 39(3): 188-197

Chen S, Oliveira MT, Sanz A, Kemppainen E, Fukuoh A, Schlicht B, Kaguni LS, Jacobs HT
A Cytoplasmic Suppressor of a Nuclear Mutation Affecting Mitochondrial Functions in Drosophila
Genetics, 192(2): 483-493

Rämet M
The fruit fly Drosophila melanogaster unfolds the secrets of innate immunity
Acta Paediatrica, 101: 900-905

van Mierlo JT, Bronkhorst AW, Overheul GJ, Sadanandan SA, Ekström JO, Heestermans M, Hultmark D, Antoniewski C, van Rij RP
Convergent evolution of Argonaute-2 slicer antagonism in two distinct insect RNA viruses
PLoS Pathog. 8: e1002872

Sampson CJ, Valanne S, Fauvarque MO, Hultmark D, Rämet M, Williams MJ
The RhoGEF Zizimin-related acts in the Drosophila cellular immune response via the Rho GTPases Rac2 and Cdc42
Dev. Comp. Immunol. 38(1): 160-168

Vanha-aho L-M, Kleino A, Kaustio M, Ulvila J, WIlke B, Hultmark D, Valanne S, Rämet M
Functional characterization of the infection-inducible peptide Edin in Drosophila melanogaster
PLoS One 7(5): e37153

Grönholm J, Kaustio M, Myllymäki H, Kallio J, Saarikettu J, Kronhamn J, Valanne S, Silvennoinen O, Rämet M
Not4 enhances JAK/STAT pathway-dependent gene expression in Drosophila and in human cells
FASEB J. 26(3): 1239-1250

Stefanatos R, Sanz A
Mitochondrial complex I: a central regulator of the aging process
Cell Cycle 10(10): 1528-1532

Ekström JO, Habayeb MS, Srivastava V, Kieselbach T, Wingsle G, Hultmark D
Drosophila Nora virus capsid proteins differ from those of other picorna-like viruses
Virus Res. 160: 51-58

Valanne S, Wang JH, Rämet M
The Drosophila Toll signaling pathway
J. Immunol. 186: 649-656

Ulvila J, Vanha-aho LM, Kleino A, Vähä-Mäkilä M, Vuoksio M, Eskelinen S, Hultmark D, Kocks C, Hallman M, Parikka M , Rämet M
Cofilin regulator 14-3-3-zeta is an evolutionarily conserved protein required for phagocytosis and microbial resistance
J. Leukocyte Biol. 89(5): 649-659

Fernández-Ayala DJ, Chen S, Kemppainen E, O’Dell KM, Jacobs HT
Gene expression in a Drosophila model of mitochondrial disease
PLoS One. 5(1): e8549

Kallio J, Myllymäki H, Grönholm J, Armstrong M, Vanha-aho LM, Mäkinen L, Silvennoinen O, Valanne S, Rämet M
Eye transformer is a negative regulator of Drosophila JAK/STAT signaling
FASEB J. 24(11): 4467-4479

Sanz A, Fernández-Ayala DJ, Stefanatos RK, Jacobs HT
Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila
Aging (Albany NY). 2(4): 220-223

Sanz A, Soikkeli M, Portero-Otín M, Wilson A, Kemppainen E, McIlroy G, Ellilä S, Kemppainen KK, Tuomela T, Lakanmaa M, Kiviranta E, Stefanatos R, Dufour E, Hutz B, Naudí A, Jové M, Zeb A, Vartiainen S, Matsuno-Yagi A, Yagi T, Rustin P, Pamplona R, Jacobs HT
Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction
Proc Natl Acad Sci U S A. 107(20): 9105-9110

The Nasonia Genome Working Group
Functional and evolutionary insights from the genomes of three parasitoid Nasonia species
Science 327: 343-348

Ulvila J, Hultmark D, Rämet M
RNA silencing in the antiviral innate immune defence–role of DEAD-box RNA helicases
Scand J Immunol. 71(3): 146-158

Pokrzywa M, Dacklin I, Vestling M, Hultmark D, Lundgren E, Cantera R
Uptake of aggregating transthyretin by fat body in a Drosophila model for TTR-associated amyloidosis
PLoS One 5: e14343

Valanne S, Myllymäki H, Kallio J, Schmid MR, Kleino A, Murumägi A, Airaksinen L, Kotipelto T, Kaustio M, Ulvila J, Esfahani SS, Engström Y, Silvennoinen O, Hultmark D, Parikka M, Rämet M
Genome-wide RNA interference in Drosophila cells identifies G Protein-Coupled Receptor Kinase 2 as a conserved regulator of NF-kappaB signaling
J. Immunol. 184: 6188-6198

Valtonen TM, Kleino A, Rämet M, Rantala MJ
Starvation reveals maintenance cost of humoral immunity
Evol. Biol. 37: 49-57

© 2019 | BioMediTech Finland. All rights reserved.